# PENUNTUN PRAKTIKUM KIMIA DASAR II

(JURUSAN BIOLOGI FAKULTAS MIPA)



# **PENYUSUN**

Drs. Syaiful Bahri, M.Si Dra. Nurhaeni, S.Si, M.Si

UNIT PELAKSANA TEKNIS (UPT)
LABORATORIUM DASAR
UNIVERSITAS TADULAKO
PALU
2013

KATA PENGANTAR

Untuk memenuhi kebutuhan dan meningkatkan mutu serta kelengkapanperkuliahan mata

kuliah Kimia Organik pada Program Studi Biologi Fakultas Matematika dan Ilmu Pengetahuan

Alma Universitas Tadulako (FMIPA), perlu kiranya disusun suatu acuan pelaksanaam

praktikum. Berdasarkan kebutuhan di atas maka kami dari team pengajar Kimia Organik FMIPA

telah menyusun suatu penuntun praktikum yang tentunya sesuai dengan kebutuhan pada

tuntunan perkuliahan yang diberikan. Tetunya penuntun ini belum sempurna seutuhnya, kami

berharap bagi yang membaca dapat memberikan masukan dan kritik, sehinggsa penuntun ini

khusus digunakan pada intern Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Tadulako.

Palu, Februari 2013 Koordinator Mata Kuliah

Drs. SYAIFUL BAHRI, M.Si

NIP. 19620323 199003 1 001

# TATA TERTIB PRAKTIKUM

- 1. Sebelum melakukan praktikum, para praktikan sudah mempersiapkan alat/perlengkapan yang dibutuhkan pada saat praktium berlangsung, diantaranya yaitu lap halus, lap kasar, pipet tetes, sikat tabung, sabun, kapas, masker, jas praktikum, dll.
- 2. Praktikan harus sudah berada dilaboratorium 5 menit sebelum praktikum dimulai. Bila terlambat 5 menit praktikan tidak dibenarkan untuk ikut praktikum pada hari tersebut.
- 3. Selama praktikum berlangsung, praktikan tidak diperkenankan meninggalkan laboratorium tanpa seizin asisten atau dosen Pembina. Bila melanggar, praktikan tidak diperbolehkan melanjutkan praktikum yang tersisa, dianggap praktikum hari itu semuanya gagal.
- 4. Praktikan harus menggunakan jas praktikum serta harus menggunakan sepatu selama praktikum berlangsung, dan harus menguasai prosedur kerja dari praktikum yang akan dipercobakan.
- 5. Selama praktikum, praktikan tidak diperkenankan merokok dan mengganggu teman kelompok maupun teman dikelompok lain.
- 6. Selama praktikum, praktikan tidak diperkenankan meminjam alat dari teman dikelompok lain tanpa seiizin dosen maupun asisten laboratorium. Jika merasa kurang, minta langsung pada laboran.
- 7. Bila praktikan tidak mengikuti praktikum sebanyak 25% dari jumlah saruan praktikum, maka praktikan dianggap gagal. Berarti praktikum harus diulang pada semester depan.
- 8. Setiap meminjam alat harus disertai dengan bon alat yang diketahui oleh asisten maupun laboran.
- 9. Alat-alat yang rusak atau dipecahkan oleh salah seorang praktikan harus digantikan oleh kelompok dari praktikan tersebut paling lambat 1 minggu setelah praktikum. Tanpa pergantian, tidak diperkenankan mengikuti praktikum selanjutnya kecuali seizing dosen Pembina praktikum.
- 10. Hal-hal yang belum tercantum dalam penuntun ini akan diatur kemudian.

# **DAFTAR ISI**

# Kata Pengantar Tata Tertib Laboratorium Daftar Isi

# Percobaan I: IDENTIFIKASI GUGUS FUNGSI

- Ikatan tak jenuh dengan Br<sub>2</sub>
- Gugus karbonil
- Gugus Nitro dengan NaOH
- Gugus Nitro dengan HCl
- Gugus Ester
- Ikatan tak Jenuh dengan KMnO<sub>4</sub>
- Gugus hidroksi

# Percobaan II: SENYAWA ALKOHOL DAN FENOL

- Test Iodoform
- Lucas Test
- Esterifikasi
- Test Oksidasi
- Membedakan alcohol mono dan poli
- Kelaruta alkohol dan fenol
- Test ferri klorida

# Percobaan III : SENYAWA KARBONIL (ALDEHID DAN KETON)

- Test dengan pereaksi Tollens
- Test dengan pereaksi shiff
- Test dengan peraksi Fehling
- Test dengan peraksi Benedict
- Test dengan NaOH
- Polimerisasi

# Percobaan IV: SENYAWA ASAM KARBOKSILAT DAN ESTER

- Asam karboksilat
- Pembentukan ester
- Membedakan karboksilat mono dan poli
- Uji pengendapan dengan FeCl<sub>3</sub>
- Uji KMnO<sub>4</sub>
- Uji AgNO<sub>3</sub> dan basa

# Percobaan V: PROTEIN

- Uji Kelarutan
- Uji Pengendapan

# Percobaan VI: KARBOHIDRAT I

- Hidrolisis Sukrosa
- Hidrolisis Pati

# Percobaan VII : KARBOHIDRAT II (Uji Pengendapan)

- Uji Molisch
- Uji Iodium
- Uji Benedict

# Percobaan VIII: LIPID

- Uji Kelaruta Lipid
- Uji Keasaman minyak
- Uji ketidakjenuhan minyak

# PERCOBAAN I IDENTIFIKASI GUGUS FUNGSI

I. TUJUAN: Menentukan gugus fungsi yang terdapat pada senyawa organic

# II. LATAR BELAKANG TEORI

Dalam mempelajari senyawa organic, yang terpenting adalah bagaimana untuk membedakan senyawa organic yang satu dengan yang lainnya. Karena antara senyawa organic itu hanya dibedakan oleh gugus fungsi yang melekat padfa kerangka utamanya. Sebagai kerangka utama sebagai senyawa hidrokarbon, baik yang mempunyai ikatan jenuh maupun tak jenuh. Senyawa hidrokarbon jenuh adalah turunan alkana dan tak jenuh turunan alkena dan alkuna.

Sifat kimia dari senyawa hidrokarbon ini ditentukan oleh bagaimana gugus fungsi itu menempelnya. Senyawa dengan gugus fungsi yang sama akan memberikan sifat kimia yang sama namun sifat fisika yang berbeda. Berdasarkan hal inilah maka senyawa ini dapat dikelompokkan. Beberapa bentuk gugus fungsi yang diketahui adalah seperti pada table 1.

**Table 1. Gugus Fungsi Senyawa Organik** 

| GUGUS FUNGSI     | NAMA      | GOLONGAN SENYAWA |
|------------------|-----------|------------------|
| -OH              | Hidroksi  | Alkohol          |
| -OR              | Alkoksi   | Eter             |
| -C=O             | Karbonil  | Keton            |
| -CHO             | Formil    | Aldehid          |
| -COOH            | Karboksil | Karboksilat      |
| -NH <sub>2</sub> | Amino     | Amina            |
| -X               | Halogen   | Halida           |

# BAHAN dan ALAT

# ALAT

| 1. | Tabung reaksi  | 6 buah  |
|----|----------------|---------|
|    | Tubuliu Icansi | O Duaii |

2. Rak tabung 1 buah

3. Gelas kimia 100 ml 1 buah

# **BAHAN**

- 1. Minyak kelapa rakyat
- 2. Etanol
- 3. Minyak bimoli spesial
- 4. KMnO<sub>4</sub> 0,01 M
- 5. Nitrobenzene
- 6. Br<sub>2</sub> / CCl<sub>4</sub>
- 7. NaNO<sub>2</sub> 0,1 N
- 8. H<sub>2</sub>SO<sub>4</sub> 10%
- 9. FeCl<sub>3</sub> 0,1 M
- 10. HCl 1 M
- 11. NaOH 6 N

- 4. Pipet tetes 3 buah
- 5. Pembakar 1 buah
- 6. Sumbat tabung reaksi 1 buah
- 12. NaOH 10%
- 13. CuSO<sub>4</sub> anhidrat
- 14. Logam Na
- 15. Asetaldehid dan aseton
- 16. Kloroform
- 17. 2,4-dinitrofenil hidrazin
- 18. HCl 3 M
- 19. Serbuk Zn
- 20. Tersier butanol
- 21. Hidroksil amin HCl

# **PROSEDUR KERJA**

#### I. IKATAN TAK JENUH DENGAN Br<sub>2</sub>

- 1. Ambil minyak kelapa dan minyak bimoli special masukkan dalam tabung reaksi berbeda sebanyak 2 ml.
- 2. Tambahkan ke dalamnya 10 tetes kloroform.
- 3. Tambahkan secara tetes demi tetes larutan Br<sub>2</sub> dalam CCl<sub>4</sub> sambil dikocok.
- 4. Amati perubahan yang terjadi dan catat.

# II. GUGUS KARBONIL

- 1. Masukkan 0,5 ml larutan 2,4-dinitrofenil hidrazin ke dalam dua tabung reaksi.
- 2. Tambahkan masing-masing tabung tabung dengan asetaldehid dan aseton.
- 3. Amati perubahan yang terjadi dan catat.

# III. GUGUS NITRO DENGAN NaOH

- 1. Masukkan 0,5 ml larutan nitrobenzene ke dalam tabung reaksi. Tambahkan 0,5 ml NaOH 10%.
- 2. Setelah 2 menit, tambahkan NaNO<sub>2</sub> dan 5 tetes asam sulfat 10% dan kocok
- 3. Amati perubahan yang terjadi dan catat.

#### IV. GUGUS NITRI DENGAN HCI

- 1. Masukkan 0,5 ml larutan nitrobenzene ke dalam tabung reaksi
- 2. Tambahkan 3 ml HCl 3 M dan serbuk Zn, dinginkan
- 3. Tambahkan 0,5 ml NaNO<sub>2</sub> 0,5 M
- 4. Amati perubahan yang terjadi dan catat.

#### V. GUGUS ESTER

- 1. Masukkan 3 tetes etil asetat, 1 ml larutan hidroksiamin HCl dalam etanol dan 0,2 ml NaOH 6 N.
- 2. Campuran lalu dipanaskan beberapa saat, setelah itu dinginkan.
- 3. Tambahkan 2 ml HCl 1 N dan 1 tetes FeCl<sub>3</sub>.
- 4. Amati perubahan yang terjadi dan catat.

# VI. IKATAN TAK JENUH DENGAN KMnO<sub>4</sub>

- 1. Tambahkan 20 tetes minyak kelapa dalam 10 tetes tertier butanol
- 2. Tambahkan secara tetes demi tetes larutan KMnO<sub>4</sub> 0,01 M sambil dikocok.
- 3. Amati perubahan yang terjadi dan catat.

# VII. GUGUS HIDROKSI

- 1. Masukkan 3 ml etanol ke dalam tabung reaksi, lalu tambahkan sedikit CuSO<sub>4</sub> anhidrat, biarkan beberapa saat.
- 2. Pindahkan larutan pada tabung reaksi lain secara hati-hati.
- 3. Tambahkan sedikit logam Na, tutup tabung reaksi dengan sumbat.
- 4. Setelah beberapa saat buka sumbat, segera dekatkan pada nyala api dan amati.

# PERTANYAAN

- 1. Apa yang dimaksud gugus fungsional?
- 2. Apa fungsi kloroform dlam percobaan 1?
- 3. Mengapa warna dari KMnO<sub>4</sub> pada uji hidrokarbon tak jenuh dapat hilang?

# PERCOBAAN II SENYAWA ALKOHOL DAN FENOL

I. TUJUAN: Untuk mengetahui uji kualitatif dari senyawa alcohol dan fenol

# II. LATAR BELAKANG TEORI

Alkohol adalah suatu senyawa yang banyak digunakan dalam keseharian hidup manusia di permukaan bumi ini. Karena senyawa ini dapat menghangatkan tuguh. Hal ini tercermin dalam berbagai merek minuman. Adapun senyawa alcohol yang banyak digunakan adalah etanol dan methanol serta isopropanol. Senyawa etanol misalnya dapat dibuat dengan cara peragian dari karbohidrat. Adapun proses yang dilakukan untuk ini adalah dengan cara perombakan karbohidrat oleh senyawa enzim sehingga terbentuk senyawa monosakarida. Selanjutnya senyawa ini dirubah lagi menjadi etanol.

$$(C_6H_{12}O_6)_n$$
  $\longrightarrow$   $C_6H_{12}O_6$   $3CH_3CH_2OH$  Pati monosakarida etanol

#### **BAHAN dan ALAT**

#### BAHAN

1. Iodium dalam KI

2. NaOH 10 %

3. Metanol

4. Etanol

5. Fenol

6. Asam sulfat pekat

7. Tertier butanol

8. Asam asetat glasial

9. Kalium bikromat 0,1 M

10.Kalium permanganat 0,1 M

11.FeCl<sub>3</sub> 0,1 M

12.CuSO<sub>4</sub> 1 M

13. Isopropil alkohol

14.ZnCl<sub>2</sub> / HCl

# **PROSEDUR KERJA**

- I. TEST IODOFORM
  - 1. Masukkan 2 ml methanol dan etanol ke dalam masing-masing tabung reaksi
  - 2. Setelah itu, tambahkan beberapa tetes larutan Iodium dalam KI dan larutan NaOH 10 % tetes demi tetes sampai warna Iodium hilang.
  - 3. Amati perubahan yang terjadi, jika belum ada belum ada perubahan panaskanlah larutan pada suhu 60 °C selama 2 menit.
  - 4. Amati lagi perubahan yang terjadi dan catat.

#### II. LUCAS TEST

- 1. Siapkan 3 buah tabung reaksi dan ke dalamnya masukkan masing-masing 1 ml etanol, isopropil alkohol dan tertier butanol
- 2. Tambahkan ke dalam tabung reaksi pereaksi Lucas (ZnCl<sub>2</sub>: HCl)
- 3. Kocok campuran secara hati-hati, lalu diamkan beberapa waktu sambil diamati perubahan yang terjadi.

# III. ESTERIFIKASI

- 1. Masukkan 2 ml etanol ke dalam tabung reaksi
- 2. Tambahkan 1 ml asam asetat glasial dan 2 tetes asam sulfat pekat
- 3. Panaskan secara perlahan-lahan di atas penangas air

- 4. Amati bau yang keluar dari tabung reaksi dengan cara mengibaskan tangan pasa permukaan tabung (jangan langsung dekat hidung).
- 5. Bila belum teramati tambahkan sedikit air (5 tetes).

# IV. TEST OKSIDASI

- 1. Masukkan 2 tetes asam sulfat pekat, campur dengan 1 ml kalium bikromat, aduk hati-hati.
- 2. Tambahkan etanol dan panaskan perlahan-lahan.
- 3. Amati perubahan warna yang terjadi dan catat.
- 4. Lakukan hal yang sama untuk methanol.
- 5. Setelah itu oksidasi kalium bikromat diganti dengan KMnO<sub>4</sub>

# V. MEMBEDAKAN ALKOHOL MONO DAN POLI

- 1. Masukkan masing-masing senyawa etanol dan gliserol ke dalam tabung reaksi lalu encerkan sedikit dengan air.
- 2. Tambahkan 5 tetes CuSO<sub>4</sub> dan beberapa tetes larutan NaOH 10 %
- 3. Amati perubahan yang terjadi dan catat.

# VI. KELARUTAN ALKOHOL DAN FENOL

- 1. Masukkan 2 ml etanol, metanol dan fenol ke dalam masing-masing tabung reaksi
- 2. Tambahkan air ke dalamnya 2 ml
- 3. Tutup tabung reaksi dan kocok
- 4. Amati peristiwa yang terjadi.
- 5. Perhatikan lapisan yang terpisah dan pada lapisan mana airnya

# VII. TEST FERRI KLORIDA

- 1. Masukkan 2 ml etanol dan fenol ke dalam-masing tabung reaksi.
- 2. Tambahkan beberapa tetes larutan Ferri klorida ke dalam larutan tersebut
- 3. Amati perubahan yang terjadi

# PERCOBAAN III ALDEHID DAN KETON

- I. TUJUAN: Untuk membedakan senyawa Aldehid dan Keton
- II. LATAR BELAKANG TEORI

Sebagaimana diketahui bahwa senyawa aldehid, keton dan asam-asam karboksilat adalah senyawa-senyawa yang mengandung gugus karbonil. Semua senyawa ini termasuk turunan dari senyawa hidrokarbon. Perbedaan yang jelas dari ketiga senyawa ini hanya terdapat pada gugus yang lain menempel selain gugus karbonil yaitu gugus H pada aldehid, gugus OH pada asam karboksilat dan gugus alkil pada senyawa keton.

Salah satu senyawa aldehid yang sangat penting adalah formaldehid, yaitu jenis senyawa yang sering digunakan untuk bahan penghilang bau dan pengawet. Titik pusat reaksitifitas senyawa aldehid dan keton adalah ikatan pi dari gugus karbonilnya. Seperti senyawa alkena, senyawa aldehid dan keton juga mengalami peristiwa adisi pada ikatan pi-nya. Kereaktifan ini disebabkan oleh adanya muatan positif pada atom karbon yang mengikat gugus karbonil. Makin besar muatan yang berada pada atom karbon itu, maka senyawa semakin reaktif.

# **BAHAN dan ALAT**

**BAHAN** 

- 1. Aldehid
- 2. Aseton
- 3. AgNO<sub>3</sub> 0,1 M
- 4. NH<sub>4</sub>OH
- 5. Reagen Shiff
- 6. Asam Karboksilat

- 7. Reagen Fehling A dan B
- 8. Reagen Benedict
- 9. 2,4-dinitrofenil hidrazin
- 10. NaOH 10 %
- 11. Asam Sulfat Pekat

# ALAT

Tabung reaksi
 Rak tabung reaksi
 buah
 Pemanas
 buah
 Pipet tetes
 buah

# **PROSEDUR KERJA**

- TEST DENGAN PEREAKSI TOLLEN
  - 1. Masukkan aldehid, keton, asam karboksilat dalam setiap tabung reaksi.
  - 2. Tambahkan pereaksi Tollen atau perak amoniakal (AgNO<sub>3</sub> dan NH<sub>4</sub>OH)
  - 3. Amati perubahan yang terjadi dan catat.

# II. TEST DENGAN PEREAKSI SHIFF

1. Masukkan aldehid, keton, asam karboksilat dalam setiap tabung reaksi

- 2. Tambahkan ke dalamnya pereaksi Shiff.
- 3. Amati perubahan yang terjadi dan catat.

# III. TEST DENGAN PEREAKSI FEHLING

- 1. Masukkan aldehid, keton, asam karboksilat dalam setiap tabung reaksi.
- 2. Ke dalam setiap tabung reaksi masukkan reagen Fehling A dan B, lalu aduk dengan sempurna.
- 3. Panaskan dalam waterbath sampai mendidih supaya reaksi sempurna.
- 4. Amati perubahan yang terjadi dan catat.

#### IV. TEST DENGAN BENEDICT

- 1. Masukkan aldehid, keton, asam karboksilat dalam setiap tabung reaksi.
- 2. Tambahkan ke dalamnya reagen Benedict, panaskan larutan sampai mendidih.
- 3. Amati perubahan yang terjadi dan catat.

# V. TEST DENGAN NaOH

- 1. Ke dalam tabung reaksi, masukkan larutan NaOH 10 %
- 2. Tambahkan masing-masing beberapa tetes larutan karbonil
- 3. Campur larutan dengan sempurna dan didihkan beberapa menit
- 4. Amati perubahan yang terjadi dan catat.

# VI. POLIMERISASI

- 1. Masukkan aldehid, keton, asam karboksilat dalam setiap tabung reaksi.
- 2. Tambahkan satu tetes asam sulfat pekat, kocok dan catat perubahan suhu.
- 3. Tambahkan 3 ml air dingin dan kocok baik-baik
- 4. Perhatikan apakah ada endapan yang tidak larut.

# **PERTANYAAN**

- 1. Bagaimana cara membedakan senyawa aldehid dan keton secara reaksi?
- 2. Apa kegunaan senyawa formaldehis yang sangat penting?
- 3. Tuliskan bentuk reaksi antara etil magnesium bromide dengan aldehid!

# PERCOBAAN IV SENYAWA ASAM KARBOKSILAT DAN ESTER

I. TUJUAN: Untuk mengetahui adanya senyawa karboksilat dan ester

# II. LATAR BELAKANG TEORI

Asam karboksilat adalah salah satu srnyawa organik yang mengandung gugus karboksil COOH. Senyawa ini juga termasuk dari deret turunan alkana yang mana salah satu gugus H-nya digantikan oleh gugus karboksil. Sifat kimia yang menonjol dari senyawa ini adalah sifat asamnya, yaitu asam lemah, dengan pKa sekitar 5. Bila asam karboksilat dipanaskan akan kehilangan gugus CO<sub>2</sub> yang dikenal dengan peristiwa de-karboksilasi.

Senyawa ester juga termasukk dari turunan dari asam karboksilat, diaman atom H pada karboksil digantikan oleh alkil dari senyawa lain. Senyawa ini terbentuk dari rekais antara asam karboksilat dengan alkohol dengan katalis asam sulfat. Reaksi ini dikenal dengan reaksi esterifikasi.

$$\begin{array}{c}
O \\
| | \\
R - C - OH + R - C - OH
\end{array}$$

$$\xrightarrow{H_2SO_4}$$

$$\begin{array}{c}
O \\
| | \\
R - C - OR + H_2O
\end{array}$$

Senyawa ester ini sering kita temui dalam berbagai tanaman yang dikenal dengan minyak atsiri. Senyawa ini mengeluarkan aroma yang harum dan berbau sedap.

# **BAHAN dan ALAT**

#### BAHAN

- 1. NaHCO<sub>3</sub> 5%
- 2. Asam karboksilat
- 3. Etil asetat
- 4. Asam asetat
- 5. Asam oksalat
- 6. FeSO<sub>4</sub> 1 M
- 7. Asam sulfat pekat
- 8. Formiat
- 9. Ba(OH)<sub>2</sub> 0,1 M

- 10. Salisilat
- 11. KOH 1 M
- 12. NaOH 6 N
- 13. Etanol
- 14. Hidroksil amin HCl 0,5 N
- 15. FeCl<sub>3</sub> 5 %
- 16. Minyak goreng
- 17. Asam benzoate

#### ALAT

- Tabug reaksi
   Rak tabung reaksi
   buah
   Pipet tetes
   buah
- 4. Pemanas

# **PROSEDUR KERJA**

- I. ASAM KARBOKSILAT
  - 1. Ke dalam tabung reaksi, masukkan senyawa yang mengandung karboksilat.
  - 2. Tambahkan beberapa tets larutan Natrium bikarbonat 5 %
  - 3. Perhatikan keluarnya gas dari tabung reaksi
  - 4. Catat perubahan yang terjadi
- II. PEMBENTUKAN ESTER

- 1. Masukkan 1 ml senyawa yang mengandung gugus karboksilat ke dalam masing-masing tabung.
- 2. Tambahkan 2 ml etanol dan beberapa tetes asam sulfat pekat.
- 3. Dinginkan dan tambahkan NaHCO<sub>3</sub>
- 4. Amati bau yang keluar menandakan terbentuknya ester.

# III. MEMBEDAKAN KARBOKSILAT MONO DAN POLI

- 1. Masukkan asam oksalat dan asetat ke dalam masing-masing tabung reaksi
- 2. Tambahkan 3 tetes larutan FeSO<sub>4</sub> 1 M dan KOH atau NaOH sebanyak 5 tetes.
- 3. Amati hasil yang didapat dan catat.

# IV. UJI PENGENDAPAN DENGAN FeCl<sub>3</sub>

- 1. Masukkan 5 mg asam benzoate ke dalam tabung reaksi dan larutkan dalam NaOH
- 2. Tambahkan HCl sampai netral
- 3. Selanjutnya masukkan FeCl<sub>3</sub> 5 tetes.
- 4. Amati perubahan yang terjadi.

# V. UJI KMnO<sub>4</sub>

- 1. Masukkan 0,1 gr / 1 ml asetat, benzoate dan salisilat masing-masing dalam tabung reaksi berbeda.
- 2. Tambahkan dengan 2 tetes larutan KMnO<sub>4</sub>
- 3. Amati perubahan yang terjadi

# VI. UJI AgNO<sub>3</sub> DAN BASA

- 1. Ke dalam 3 tabung reaksi, masukkan 1 ml asam formiat asetat dan oksalat.
- 2. Tambahkan 5 tetes larutan AgNO<sub>3</sub>, amati perubahan yang terjadi.
- 3. Selanjutnya dipanaskan, amati perubahan
- 4. Lakukan prosedur yang sama dengan penambahan Ba(OH)<sub>2</sub>

# **PROTEIN**

- I. TUJUAN: a. Mengetahui daya kelarutan protein terhadap pelarut tertentu.
  - b. Mengetahui pengaruh larutan garam alkali dan garam divalent konsentrasi tinggi terhadap sifat kelarutan protein.

# II. LATAR BELAKANG TEORI

Protein merupakan komponen utama dalam semua sel hidup, baik tumbuhan maupun hewan. Protein adalah senyawa organik kompleks yang tersiri atas unsur-unsur Karbon (50—55%), Hidrogen (± 7%), mengandung Belerang (S) dan Fosfor (P) dalam jumlah sedikit (1—2%). Ada beberapa protein lainnya mengandung unsur logam seperti tembaga dan besi.

Protein bersifat **amfoter**, yaitu dapat bereaksi dengan larutan asam maupun basa. Daya larut protein berbeda di dalam air, asam, dan basa. Sebagian ada yang mudah larut da nada pula yang sukar larut. Namun, semua protein tidak larut dalam dalam pelarut lemak seperti eter atau kloroform. Apabila protein dipanaskan atau ditambah etanol absolut, maka protein akan menggumpal (terkoagulasi). Hal ini disebabkan etanol menarik mantel air yang melingkupi molekul-molekul protein.

Pengaruh penambahan garam terhadap kelarutan protein berbeda-beda, tergantung pada konsentrasi dan jumlah muatan ionnya, semakin efektif garam dalam mengendapkan protein. Peristiwa pemisahan atau pengendapan protein oleh garam berkonsentrasi tinggi disebut **salting out.** 

#### **BAHAN dan ALAT**

#### Bahan

- 1. Albumin telur
- 2. Gelatin
- 3. Air suling (aguades)
- 4. Larutan HCl 10%
- 5. Larutan NaOH 40%
- 6. Alkohol 96%

- 7. Kloroform
- 8. Larutan (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> jenuh
- 9. Larutan NaCl 5%
- 10. Larutan BaCl 5%
- 11. Larutan CaCl 5%
- 12. Larutan MgSO<sub>4</sub> 5%

# ALAT

- 1. Tabung reaksi
- 2. Pipet ukur
- 3. Pipet tetes

#### PROSEDUR KERJA

- I. UJI KELARUTAN
  - 1. Sediakan 5 tabung reaksi, masing-masing isilah dengan: air suling, HCl 10%, NaOH 40%, alcohol 96%, dan kloroform sebanyak 1 ml.
  - 2. Tambahkan 2 ml larutan albumin telur pada setiap tabung.
  - 3. Kocoklah dengan kuat, kemudian amati sifat kelarutannya.
  - 4. Ulangi percobaan menggunakan gelatin.

#### **Hasil Percobaan**

| Bahan                     | Tabung 1 | Tabung 2 | Tabung 3 | Tabung 4 | Tabung 5 |
|---------------------------|----------|----------|----------|----------|----------|
| Albumin telur             | 2 ml     |
| Air suling                | 1 ml     | _        | _        | _        | _        |
| HCI 10%                   | _        | 1 ml     | _        | _        | _        |
| NaOH 40%                  | _        | -        | 1 ml     | _        | _        |
| Alkohol 96%               | _        | _        | -        | 1 ml     | _        |
| Kloroform                 | _        | _        | _        | _        | 1 ml     |
| Kocok tabung dengan kuat. |          |          |          |          |          |

| Hasil:<br>Larut/tidak larut |            |          |          |          |          |
|-----------------------------|------------|----------|----------|----------|----------|
| Bahan                       | Tabung 1   | Tabung 2 | Tabung 3 | Tabung 4 | Tabung 5 |
| Albumin telur               | 2 ml       | 2 ml     | 2 ml     | 2 ml     | 2 ml     |
| Air suling                  | 1 ml       | _        | _        |          | _        |
| HCl 10%                     | _          | 1 ml     | _        | _        | _        |
| NaOH 40%                    | _          | _        | 1 ml     | _        | _        |
| Alkohol 96%                 | _          | _        | _        | 1 ml     | _        |
| Kloroform                   | _          | _        | _        | _        | 1 ml     |
| Kocok tabung der            | ngan kuat. |          |          |          |          |
| Hasil:                      |            |          |          |          |          |
| Larut/tidak larut           |            |          |          |          |          |

# II. UJI PENGENDAPAN DENGAN GARAM

- 1. Sediakan 5 tabung reaksi, masing-masing isilah dengan 2 ml albumin telur.
- 2. Pada tabung 1, 2, 3, 4, dan 5 berturut-turut tambahkan larutan NaCl 5%, CaCl<sub>2</sub> 5%, MgSO<sub>4</sub> 5%, dan (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> jenuh setetes demi setetes sampai timbul endapan.
- 3. Selanjutnya, tambahkan kembali larutan-larutan garam secara berlebihan.
- 4. Kocoklah tabung, kemudian amati perubahan yang terjadi.

# **Hasil Percobaan**

| Bahan            | Tabung 1 | Tabung 2 | Tabung 3 | Tabung 4 | Tabung 5 |
|------------------|----------|----------|----------|----------|----------|
| Albumin telur    | 2 ml     |
| Air suling       | berlebih | _        | _        | _        | _        |
| HCI 10%          | _        | berlebih | _        | _        | _        |
| NaOH 40%         | ı        | _        | berlebih | _        | _        |
| Alkohol 96%      | 1        | _        | _        | berlebih | -        |
| Kloroform        | ı        | _        | _        | _        | berlebih |
| Kocoklah tabung. |          |          |          |          |          |
| Hasil: Endapan   |          |          |          |          |          |
| banyak/sedikit   |          |          |          |          |          |

#### **KARBOHIDRAT I**

- I. TUJUAN: a. Membuktikan adanya karbohidrat secara kualitatif.
  - b. Membuktikan adanya polisakarida (amilum, glikogen dan dekstrin)
  - c. Membuktikan adanya gula reduksi

# II. LATAR BELAKANG TEORI

Karbohidrat merupakan senyawa karbon yang banyak dijumpai di alam, terutama sebagai penyusun utama jaringan tumbuh-tumbuhan. Dari rumus umum karbohidrat, dapat diketahui bahwa senyawa ini adalah suatu polimer yang tersusun atas monomer-monomer. Berdasarkan monomer yang menyusunnya, karbohidrat dibedakan menjadi 3 golongan, yaitu :

- 1. **Monosakarida**: karbohidrat yang paling sederhana yang tidak dapat dihidrolisis menjadi karbohidrat lain. Bentuk ini dibedakan kembali menurut jumlah atom C yang dimiliki dan sebagai aldose atau ketosa. Monosakarida yang terpenting adalah *glukosa, galaktosa,* dan *fruktosa.*
- 2. **Oligosakarida**: karbohidrat yang tersusun lebih dari sepuluh satuan monosakarida. Oligosakarida yang umum adalah *disakarida*, yang terdiri atas dua satuan monosakarida dan dapat dihidrolisis menjadi monosakarida. Contoh: *sukrosa, maltose,* dan *laktosa.* 
  - 3. Polisakarida: karbohidrat yang tersusun lebih dari sepuluh satuan monosakarida dan dapat berantai lurus atau bercabang. Polisakarida dapat dihidrolisis oleh asam atau enzim tertentu yang kerjanya spesifik. Hidrolisis sebagian polisakarida yang menghasilkan oligosakarida dan dapat digunakan untuk menetukan struktur molekul polisakarida. Contoh: amilum, glikogen, dekstrin, dan sellulosa. Amilum atau pati dengan iodium menghasilkan warna biru, dekstrin menghasilkan warna merah anggur, sedangkan glikogen dan sebagian pati yang terhidrolisis bereaksi dengan iodium membentuk warna merah cokelat.

Karbohidrat oleh asam anorganik pekat akan dihidrolisis menjadi monosakarida. Dehidrasi monosakarida jenis pentose oleh asam sulfat pekat menjadi **fulfural** dan golongan heksosa menghasilkan **hidroksi-metilfurfural**. Pereaksi Molisch yang terdiri atas α-naftol dalam alcohol akan bereaksi dengan furfural membentuk senyawa kompleks berwarna ungu.

Gula yang mempunyai gugus aldehida atau keton bebas akan mereduksi ion Cu²+ dalam suasana alkalis menjadi Cu⁺, yang mengendap sebgai Cu₂O berwarna merah bata.

# **BAHAN dan ALAT**

#### **BAHAN**

- 1. Amilum, glikogen, dekstrin, sukrosa, laktosa, maltose, galaktosa, fruktosa, glukosa, dan arabinose masing-masing dalam larutan 1%
- 2. Peraksi Molisch
- 3. Pereaksi Benedict
- 4. H<sub>2</sub>SO<sub>4</sub> pekat
- 5. Larutan iodium

#### ALAT

- 1. Tabung reaksi
- 2. Pipet tetes
- 3. Penjepit tabung

# PROSEDUR KERJA

- 4. Pengatur waktu
- 5. Alat pemanas atau penangas air

# I. UJI MOLISCH

- 1. Masukkan 15 tetes larutan uji ke dalam tabung reaksi.
- 2. Tambahkan 3 tetes pereaksi Molisch. Campurlah dengan baik.
- 3. Miringkan tabung reaksi, lalu alirkan dengan hati-hati 1 ml H<sub>2</sub>SO<sub>4</sub> pekat melalui dinding tabung agar tidak bercampur.

Reaksi positif ditandai dengan terbentuknya cincin berwarna ungu pada batas antara kedua lapisan.

# II. UJI IODIUM

- 1. Masukkan 3 tetes larutan uji ke dalam tabung reaksi atau porselin tetes.
- 2. Tambahkan 2 tetes larutan iodium.
- 3. Amati warna spesifik yang terbentuk.

# III. UJI BENEDICT

- 1. Masukkan dalam tabung reaksi 5 tetes larutan uji dan 15 tetes pereaksi Benedict. Campurlah dengan baik.
- 2. Didihkan di atas api kecil selama 2 menit atau masukkan dalam penangas air mendidih selama 5 menit.
- 3. Dinginkan perlahan-lahan.
- 4. Perhatikan warna dan endapan yang terbentuk.

Reaksi positif ditandai dengan timbulnya endapan warna biru kehijauan, kuning, atau merah bata, tergantung pada kadar gula pereduksi yang ada. Uji Benedict dapat pula digunakan untuk menentukan kadar gula dalam urin secara semikuantitatif.

| Warna                         | Penilaian | Konsentrasi      |
|-------------------------------|-----------|------------------|
| Biru/hijau keruh              |           | _                |
| Hijau/hijau kekuningan        | + 1       | Kurang dari 0,5% |
| Kuning kehijauan/kuning keruh | + 2       | 0,5 - 1,0%       |
| Jingga                        | + 3       | 1,0 - 2,0%       |
| Merah bata                    | + 4       | Lebih dari 2%    |

# **HASIL PERCOBAAN**

| No. | Zat Uji      | Hasil Uji Iodium | Polisakarida (+/-) |
|-----|--------------|------------------|--------------------|
| 1.  | Amilum 1%    |                  |                    |
| 2.  | Glikogen 1%  |                  |                    |
| 3.  | Dekstrin 1%  |                  |                    |
| 4.  | Sukrosa 1%   |                  |                    |
| 5.  | Laktosa 1%   |                  |                    |
| 6.  | Maltosa 1%   |                  |                    |
| 7.  | Galaktosa 1% |                  |                    |
| 8.  | Fruktosa 1%  |                  |                    |
| 9.  | Glukosa 1%   |                  |                    |
| 10. | Arabinosa 1% |                  |                    |

#### KARBOHIDRAT II

I. TUJUAN: Mengidentifikasi hasil hidrolisis sukrosa dan amilum (pati).

#### II. LATAR BELAKANG TEORI

Karbohidrat merupakan senyawa karbon yang banyak dijumpai di alam, terutama sebagai penyusun utama jaringan tumbuh-tumbuhan. Nama lain karbohidrat adalah sakarida (berasal dari bahasa latin saccharum = gula). Senyawa karbohidrat adalah polihidroksi aldehida atau polihidroksi keton yang mengandug gugus karbon (C), hydrogen (H), dan oksigen (O) dengan rumus empiris total (CH<sub>2</sub>O)<sub>n</sub>.

Sukrosa oleh HCl dalam keadaan panas akan terhidrolisis, lalu meghasilkan glukosa dan fruktosa. Hal ini menyebabkan uji Benedict dan Seliwanoff yang sebelum hidrolisis memberikan hasil negative menjadi positif. Uji Barfoed menjadi posotif pula dan menunjukkan bahwa hidrolisis sukrosa menghasilkan monosakarisa.

Pati (*starch*) merupakan polisakarida yang terdapat pada sebagian besar tanaman, terutama dalam golongan umbi seperti kentang dan pada biji-bijian seperti jagung atau padi. Pati terbagi menjadi dua fraksi, yaitu :

- 1. Fraksi terlarut disebut **amilosa** (± 20%), dengan struktur makromolekul linear yang dengan iodium memberikan warna biru.
- 2. Fraksi yang tidak larut disebut **amilopektin** (± 80%) dengan struktur bercabang. Dengan penambahan iodium, fraksi memberikan warna ungu sampai merah.

# **BAHAN dan ALAT**

#### BAHAN

- 1. Larutan sukrosa 1%
- 2. Pereaksi Benedict
- 3. Pereaksi Seliwanoff
- 4. Pereaksi Barfoed
- 5. Larutan HCl pekat
- 6. Larutan NaOH 2%
- 7. Kertas lakmus
- 8. Larutan amilum 1%
- 9. Larutan iodium
- 10.Larutan HCl 2 N

# ALAT

- 1. Alat pemanas
- 2. Tabung reaksi
- 3. Pipet ukur
- 4. Penjepit tabung

# **PROSEDUR KERJA**

# I. HIDROLISIS SUKROSA

- 1. Masukkan 5 ml sukrosa 1% ke dalam tabung reaksi dan tambahkan 5 tetes HCl pekat.
- 2. Campurlah dengan baik, lalu panaskan dalam penangas air mendidih selama 30 menit.
- 3. Setelah didinginkan, netralkan larutan dengan NaOH 2% dan uji dengan kertas lakmus.
- 4. Selanjutnya, uji dengan Benedict, Seliwanofff, dan Barfoed.
- 5. Simpulkan apa yang dihasilkan dari hidrolisis sukrosa?

# **HASIL PERCOBAAN**

| Perlakuan           | Uji        | Hasil Uji |
|---------------------|------------|-----------|
| 5 ml sukrosa 1%     | Benedict   |           |
| + 5 tetes HCl pekat | Seliwanoff |           |
| + Pemanasan         | Barfoed    |           |

# **PERTANYAAN**

- 1. Sebutkan nama enzim yang mengkatalisis hidrolisis sukrosa!
- 2. Sebutkan dua sumber diperolehnya enzim!
- 3. Apa kegunaan uji Benedict, Seliwanoff, dan Barfoed dalam percobaan ini? Jelaskan!
- 4. Jelaskan apa yang dimaksud gula inversi (invert)? Mengapa disebut demikian?
- 5. Sebutkan bahan alam yang mengandung gula invert!

# II. HIDROILIS PATI

- 1. Masukkan ke dalam tabung reaksi 5 ml amilum 1%, kemudian tambahkan 2,5 ml HCl 2 N.
- 2. Campurlah dengan baik, lalu masukkan dalam penangas air mendidih.
- 3. Setelah 3 menit, ujilah dengan iodium dengan mengambil 2 tetes larutan ditambah 2 tetes iodium dalam porselin tetes. Catatlah perubahan warna yang terjadi.
- 4. Lakukan uji iodium setiap 3 menit sampai hasil berwarna kuning pucat.
- 5. Lanjutkan hidrolisis selama 5 menit lagi.
- 6. Setelah didinginkan, ambil 2 nl larutan hasil hidrolisis, lalu netralkan dengan NaOH 2%. Uji dengan kertas lakmus.
- 7. Kemudian, ujilah dengan Benedict.
- 8. Simpulkan apa yang dihasilkan hidrolisis pati.

# **HASIL PERCOBAAN**

| Perlakuan           | Hidrolisis<br>(menit) | Hasil Uji Iodium | Hasil<br>Hidrolisis |
|---------------------|-----------------------|------------------|---------------------|
|                     | 3                     |                  |                     |
|                     | 6                     |                  |                     |
| 5 ml sukrosa 1%     | 9                     |                  |                     |
| + 5 tetes HCl pekat | 12                    |                  |                     |
| + Pemanasan         | 15                    |                  |                     |
|                     | 18                    |                  |                     |
|                     | 21                    |                  |                     |

# **PERTANYAAN**

- 1. Bagaimana cara mengetahui bahwa hidrolisis pati telah sempurna?
- 2. Mengapa larutan hasil hidrolisis perlu dinetralkan terlebih dahulu?
- 3. Jelaskan cara menetralkan larutan uji dengan NaOH 2% menggunakan kertas lakmus!

# **LIPIDA**

- I. TUJUAN: a. Mengetahui kelarutan lipid pada pelarut tertentu
  - b. Mengetahui sifat asam basa minyak kelapa
  - c. Mengetahui sifat ketidakjenuhan minyak atau lemak

# II. LATAR BELAKANG TEORI

Lipid adalah sekelompok senyawa organic yang terdapat dalam tumbuhan, hewan, atau manusia dan memegang peranan penting dalam struktur dan fungsi sel. Pada umumnya, lemak dan minyak tidak larut dalam air, tetapi sedikit larut dalam alcohol dan larut sempurna dalam pelarut organic seperti eter, klorofm, aseton, benzena, atau pelarut nonpolar lainnya.

Minyak dalam air akan membentuk emulsi yang tidak stabil karena bila dibiarkan, maka kedua cairan akan memisah menjadi dua lapisan. Sebaliknya, minyak dalam soda ( $Na_2CO_3$ ) akan membentuk emulsi yang stabil karena asam lemak yang bebas dalam larutan lemak bereaksi dengan soda yang membentuk sabun. Sabun mempunyai daya aktif permukaan, sehigga tetes-tetes minyak menjadi tersebar seluruhnya.

Minyak murni umumnya bersifat netral, sedangkan minyak yang sudah tengik bersifat asam. Hal ini disebabkan minyak mengalami hidrolisis dan oksidasi menghasilkan, aldehida, keton, dan asam-asam lemak bebas. Komposisi asam lemak dalam trigliserida terdiri atas lemak jenuh dan asam lemak tidak jenuh.

#### **BAHAN dan ALAT**

#### **BAHAN**

- 1. Minyak kelapa
- 2. Minyak kelapa tengik
- 3. Margarin atau lemak padat
- 4. Alcohol 96%
- 5. Kloroform

- 6. Air brom
- 7. Eter
- 8. Air suling (*aquades*)
- 9. Larutan Na<sub>2</sub>CO<sub>3</sub> 0,5%
- 10. Kertas lakmus merah atau biru

# ALAT

- 1. Tabung reaksi
- 2. Penjepit tabung
- 3. Pipet ukur
- 4. Pipet tetes
- 5. Poselin tetes

#### **PROSEDUR KERJA**

- I. UJI KELARUTAN LIPID
  - 1. Siapkan 5 tabung reaksi yang bersih dan kering. Berturut-turut isilah dengan: air suling, alcohol 96%, eter, kloroform, dan larutan  $Na_2CO_3$  0,5% sebanyak 1 ml.
  - 2. Tambahkan pada setiap tabung 2 tetes minyak kelapa.
  - 3. Kocok sampai homogeny, lalu biarkan beberapa saat.
  - 4. Amati sifat kelaruannya.

HASIL PERCOBAAN

| Bahan              | Tabung 1                                             | Tabung 2 | Tabung 3 | Tabung 4 | Tabung 5 |  |
|--------------------|------------------------------------------------------|----------|----------|----------|----------|--|
| Air suling         | 1 ml                                                 | _        | _        | _        | _        |  |
| Alkohol 96%        | _                                                    | 1 ml     | _        | _        | _        |  |
| Eter               | _                                                    | _        | 1 ml     | _        | _        |  |
| Kloroform          | _                                                    | ı        | _        | 1 ml     | _        |  |
| Na2CO3 0,5%        | _                                                    | _        | _        | _        | 1 ml     |  |
| Minyak kelapa      | 2 tetes                                              | 2 tetes  | 2 tetes  | 2 tetes  | 2 tetes  |  |
| Kocok tabung samp  | Kocok tabung sampai homogeny, biarkan beberapa saat. |          |          |          |          |  |
| Hasil:             |                                                      |          |          |          |          |  |
| Larut/tidak larut/ |                                                      |          |          |          |          |  |
| terbentuk emulsi   |                                                      |          |          |          |          |  |

# II. UJI KEASAMAN MINYAK

- 1. Teteskan sedikit minyak kelapa pada porselen tetes.
- 2. Ujilah dengan kertas lakmus.
- 3. Amati perubahan warna yang terjadi pada kertas lakmus.
- 4. Ulangi percobaan yang menggunakan minyak kelapa tengik.

# HASIL PERCOBAAN

| No. Zat Uji |               | Perubah                  | Sifat |           |
|-------------|---------------|--------------------------|-------|-----------|
| 140.        | Zat Oji       | Lakmus merah Lakmus biru |       | asam/basa |
| 1.          | Minyak kelapa |                          |       |           |
| 2.          | Minyak tengik |                          |       |           |

# III. UJI SIFAT KETIDAKJENUHAN MINYAK

- 1. Masukan 2 tetes minyak kelapa ke dalam tabung reaksi.
- 2. Tambahkan 2 ml kloroform.
- 3. Tambahkan setetes demi setetes air brom sambil dikocok hingga warna merah air brom tidak berubah.
- 4. Hitung jumlah tetesan yang dibutuhkan.
- 5. Ulangi percobaan menggunakan margarin atau lemak padat.
- 6. Bandingkan jumlah tetesan yang dihasilkan.

# HASIL PERCOBAAN

| Bahan                        | Tabung 1 | Tabung 2       |
|------------------------------|----------|----------------|
| Minyak kelapa                | 2 tetes  | _              |
| Margarin                     | _        | Seujung spatel |
| Kloroform                    | 2 ml     | 2 ml           |
| Hasil: jumlah tetes air brom |          |                |